Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen.
نویسندگان
چکیده
Three model communities of trembling aspen (monoculture, and mixed with either paper birch or sugar maple) were grown for seven years in elevated atmospheric CO(2) and O(3) using Free Air CO(2) Enrichment (FACE) technology. We utilized trends in species' importance, calculated as an index of volume growth and survival, as indications of shifting community composition. For the pure aspen communities, different clones emerged as having the highest change in relative importance values depending on the pollutant exposure. In the control and elevated CO(2) treatments, clone 42E was rapidly becoming the most successful clone while under elevated O(3), clone 8 L emerged as the dominant clone. In fact, growth of clone 8 L was greater in the elevated O(3) treatment compared to controls. For the mixed aspen-birch community, importance of aspen and birch changed by - 16 % and + 62 %, respectively, in the controls. In the treatments, however, importance of aspen and birch changed by - 27 % and + 87 %, respectively, in elevated O(3), and by - 10 % and + 45 %, respectively, in elevated CO(2). Thus, the presence of elevated O(3) hastened conversion of stands to paper birch, whereas the presence of elevated CO(2) delayed it. Relative importance of aspen and maple changed by - 2 % and + 3 %, respectively, after seven years in the control treatments. But in elevated O(3), relative importance of aspen and maple changed by - 2 % and + 5 %, respectively, and in elevated CO(2) by + 9 and - 20 %, respectively. Thus, elevated O(3) slightly increases the rate of conversion of aspen stands to sugar maple, but maple is placed at a competitive disadvantage to aspen under elevated CO(2).
منابع مشابه
Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech.
Elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) affect primary metabolism of trees in opposite ways. We studied their potential interactions on carbohydrate concentrations and contents. Two hypotheses currently under debate were tested. (1) Stimulation of primary metabolism by prolonged exposure to elevated [CO2] does not compensate for the adverse effects of O3 on carbohydra...
متن کاملSap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone.
Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in th...
متن کاملBelowground competition and the response of developing forest communities to atmospheric CO2 and O3
As human activity continues to increase CO2 and O3, broad expanses of north temperate forests will be simultaneously exposed to elevated concentrations of these trace gases. Although both CO2 and O3 are potent modifiers of plant growth, we do not understand the extent to which they alter competition for limiting soil nutrients, like nitrogen (N). We quantified the acquisition of soil N in two 8...
متن کاملLeaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides...
متن کاملEffects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.
Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, morta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant biology
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2007